Skip to main content

How to Set Up Stochastic Equations for Real World Processes: Markov–Einstein Time Scale

  • Chapter
  • First Online:
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 1771 Accesses

Abstract

In Chaps. 1621 we address a central question in the field of complex systems: Given a fluctuating (in time or space), sequentially uni- or multi-variant measured set of experimental data (even noisy data), how should one analyse the data non-parametrically, assess their underlying trends, discover the characteristics of the fluctuations, including diffusion and jump parts, and construct stochastic evolution equation for the data?

[Type][CrossLinking]The original version of this chapter was revised: Belated correction has been incorporated. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-18472-8_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Friedrich, J. Peinke, M. Sahimi, M.R. Rahimi Tabar, Phys. Rep. 506, 87 (2011)

    Google Scholar 

  2. R. Friedrich, J. Peinke, Phys. Rev. Lett. 78, 863 (1997)

    Article  ADS  Google Scholar 

  3. G.R. Jafari, S.M. Fazeli, F. Ghasemi, S.M. Vaez Allaei, M.R. Rahimi Tabar, A. Iraji Zad, G. Kavei, Phys. Rev. Lett. 91, 226101 (2003)

    Google Scholar 

  4. M. Anvari, K. Lehnertz, M.R. Rahimi Tabar, J. Peinke, Sci. Rep. 6, 35435 (2016)

    Google Scholar 

  5. J. Argyris, G. Faust, M. Haase, R. Friedrich, An Exploration of Dynamical Systems and Chaos (Springer, New York, 2015)

    Book  Google Scholar 

  6. H. Haken, Information and Self-Organization: A Macroscopic Approach to Complex Systems (Springer, Berlin, 2000)

    MATH  Google Scholar 

  7. H. Haken, Synergetics: Introduction and Advanced Topics (Springer, Berlin, 2004)

    Book  Google Scholar 

  8. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  9. H. Haken, Synergetics: An Introduction (Springer, Berlin, 1983)

    Book  Google Scholar 

  10. H. Haken, Advanced Synergetics (Springer, Berlin, 1987)

    MATH  Google Scholar 

  11. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  12. D. Kleinhans, R. Friedrich, M. Wächter, J. Peinke, Phys. Rev. E 76, 041109 (2007)

    Article  ADS  Google Scholar 

  13. M.B. Priestley, R.T. Subba, A test for non-stationarity of time-series. J. R. Stat. Soc., Ser. B 31, 140 (1969)

    MathSciNet  MATH  Google Scholar 

  14. G.P. Nason, A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J. R. Stat. Soc., Ser. B 75, 879 (2013)

    Article  MathSciNet  Google Scholar 

  15. G.P. Nason, R. von Sachs, G. Kroisandt, Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J. R. Stat. Soc., Ser. B B62, 271 (2000)

    Article  MathSciNet  Google Scholar 

  16. R. von Sachs, M.H. Neumann, A wavelet-based test for stationarity. J. Time Ser. Anal. 21, 597–613 (2000)

    Article  MathSciNet  Google Scholar 

  17. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Phys. A 316, 87 (2002)

    Article  Google Scholar 

  18. M.S. Movahed, G.R. Jafari, F. Ghasemi, S. Rahvar, M.R. Rahimi Tabar, J. Stat. Mech. P02003 (2006)

    Google Scholar 

  19. M.S. Movahed, F. Ghasemi, S. Rahvar, M.R. Rahimi Tabar, Phys. Rev. E 84, 039902 (2011)

    Google Scholar 

  20. F. Ghasemi, J. Peinke, M. Sahimi, M.R. Rahimi Tabar, Euro. Phys. J. B 47, 411 (2005)

    Google Scholar 

  21. F. Ghasemi, A. Bahraminasab, M.S. Movahed, K.R. Sreenivasan, S. Rahvar, M.R. Rahimi Tabar, J. Stat. Mech. P11008 (2006)

    Google Scholar 

  22. F. Wilcoxon, Biometrics 1, 80 (1945)

    Article  Google Scholar 

  23. C. Renner, J. Peinke, R. Friedrich, J. Fluid Mech. 433, 383 (2001)

    Article  ADS  Google Scholar 

  24. W.H. Press, S.A. Teukolsky, W. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  25. A.M. Van Mourik, A. Daffertshofer, P.J. Beek, Biol. Cybern. 94, 233 (2006)

    Article  Google Scholar 

  26. J. Gottschall, J. Peinke, New J. of Phys. 10, 083034 (2008)

    Article  ADS  Google Scholar 

  27. J. Gottschall, J. Peinke, V. Lippens, V. Nagel, Phys. Lett. A 373, 811 (2008)

    Article  ADS  Google Scholar 

  28. M. Wächter, A. Kouzmitchev, J. Peinke, Phys. Rev. E 70, 055103(R) (2004)

    Article  ADS  Google Scholar 

  29. M. Ragwitz, H. Kantz, Phys. Rev. Lett. 87, 254501 (2001)

    Article  ADS  Google Scholar 

  30. D. Kleinhans, R. Friedrich, A. Nawroth, J. Peinke, Phys. Lett. A 346, 42 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Kleinhans, R. Friedrich, Phys. Lett. A 368, 194 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Nawroth, J. Peinke, D. Kleinhans, R. Friedrich, Phys. Rev. E 76, 056102 (2007)

    Article  ADS  Google Scholar 

  33. A.M. Van Mourik, A. Daffertshofer, P.J. Beek, Phys. Lett. A 351, 13 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Riera, C. Anteneodo, J. Stat. Mech. P04020, (2010)

    Google Scholar 

  35. S.J. Lade, Phys. Lett. A 373, 3705 (2009)

    Article  ADS  Google Scholar 

  36. C. Anteneodo, S.M. Queirós, S.M. Duarte, Phys. Rev. E 82, 041122 (2010)

    Article  ADS  Google Scholar 

  37. C. Honisch, R. Friedrich, Phys. Rev. E 83, 066701 (2011)

    Article  ADS  Google Scholar 

  38. M. Tutkun, L. Mydlarski, New J. of Phys. 6, 49 (2004)

    Article  ADS  Google Scholar 

  39. J. Prusseit, K. Lehnertz, Phys. Rev. Lett. 98, 138103 (2007)

    Article  ADS  Google Scholar 

  40. G. Lim, S. Kim, E. Scalas, K. Kim, K.-H. Chang, Analysis of price fluctuations in futures exchange markets. Phys. A 387, 2823 (2008)

    Article  Google Scholar 

  41. M. Petelczyc, J.J. Żebrowski, R. Baranowski, Kramers-Moyal coefficients in the analysis and modeling of heart rate variability. Phys. Rev. E 80, 031127 (2009)

    Article  ADS  Google Scholar 

  42. M. Petelczyc, J.J. Żebrowski, E. Orlowska-Baranowska, A fixed mass method for the Kramers-Moyal expansion - application to time series with outliers. Chaos 25, 033115 (2015)

    Article  ADS  Google Scholar 

  43. M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D. Heinemann, M.R. Rahimi Tabar, J. Peinke, New J. Phys. 18, 063027 (2016)

    Article  ADS  Google Scholar 

  44. J. Gradisek, S. Siegert, R. Friedrich, I. Grabec, J. Sound Vib. 252(3), 545 (2002)

    Article  ADS  Google Scholar 

  45. F. Ghasemi, M. Sahimi, J. Peinke, R. Friedrich, G.R. Jafari, M.R. Rahimi Tabar, Phys. Rev. E 75, R060102 (2007)

    Google Scholar 

  46. J. Franke, G. Wergen, J. Krug, Phys. Rev. Lett. 108, 064101 (2012)

    Article  ADS  Google Scholar 

  47. F. Shahbazi, S. Sobhanian, M.R. Rahimi Tabar, S. Khorram, G.R. Frootan, H. Zahed, J Phys. A 36, 2517 (2003)

    Google Scholar 

  48. G.R. Jafari, M.S. Movahed, S.M. Fazeli, M.R.R. Tabar, S.F. Masoudi, J. Stat. Mech. P06008, (2006)

    Google Scholar 

  49. M.R. Rahimi Tabar, F. Nikakhtar, S. Baghram, S. Rahvar, R.K. Sheth, K. Lehnertz, M. Sahimi, Phys. Rev. E (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Rahimi Tabar .

Problems

Problems

16.1

Drift vector and diffusion matrix

Fill in the details in the derivation of Eqs. (16.14) and (16.21).

16.2

Markovian embedding of a non-Markov process

Suppose we have a time series with Markov–Einstein time scale \(t_M=n \tau \), where n and \(\tau \) are integer number and sampling interval, respectively. Argue that this non-Morkov process can be transformed to a Markov process in n-dimensions which is known as the Markovian embedding of a non-Markov process.

16.3

Estimation of Markov–Einstein time scale \(t_M\)

Consider following stochastic equations:

$$\begin{aligned} \frac{d}{dt} x(t)= & {} -x(t) + y(t) \\\nonumber \\ \frac{d}{dt} y(t)= & {} -\frac{1}{L_0} y(t) + \frac{1}{L_0} \varGamma (t) \end{aligned}$$

where \( \varGamma (t) \) is a Gaussian white noise, for \(L_0=1\) and \(L_0=10\) with \(dt=0.001\).

(a) Use the Euler-Maruyama scheme to integrate the coupled two-dimensional diffusion process and by checking the \(\chi ^2\)-test (16.12) for Chapman–Kolmogorov equation or Wilcoxon test (Appendix 1), in the stationary state estimate the Markov–Einstein time scale of the process x (compare estimated \(t_M\) with \(L_0\)).

(b) Show that the correlation time scale of y is \(\simeq L_0\) (see Problem 14.11).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabar, M.R.R. (2019). How to Set Up Stochastic Equations for Real World Processes: Markov–Einstein Time Scale. In: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-18472-8_16

Download citation

Publish with us

Policies and ethics